
Putting Events in Context∗

Aspects for Event-based Distributed Programming

A. Holzer
Polytechnique de Montréal

Montréal, QC, Canada
adrian.holzer@polymtl.ca

L. Ziarek
Fiji Systems Inc.

Indianapolis, IN, USA
lziarek@cs.purdue.edu

K.R. Jayaram
Purdue University

West Lafayette, IN, USA
jayaram@cs.purdue.edu

P. Eugster
Purdue University

West Lafayette, IN, USA
peugster@cs.purdue.edu

ABSTRACT
Event-based programming is an appealing paradigm for de-
veloping pervasive systems since events enable the decou-
pling of interacting components. Unfortunately, many event-
based languages and systems have hardwired notions of phys-
ical or logical time and space. This limits their adaptability
and target deployment environments, as pervasive systems
rely on inherent interaction and interchanging of different
protocols and infrastructures.

This paper introduces domain-specific aspects for captur-
ing event context, generalizing beyond the classic time and
space dimensions associated with events. Through exam-
ples, we demonstrate that our context aspects — conspects
for short — modularize the design and implementation of
event contexts, enabling code reuse, and making programs
portable across infrastructures. We illustrate the benefits of
conspects by using them to transparently switch protocols
in two pervasive software suites implemented in EventJava:
(1) a tornado monitoring system deployed on different ar-
chitectures ranging from desktop x86 to embedded LEON3,
and (2) a mobile social networking suite with protocols for
different application scenarios.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages —Language Con-
structs and Features; D.1.5 [Software]: Programming Tech-
niques —Object-oriented Programming

General Terms
Languages

Keywords
Aspects, Events, Context

∗This research is partially funded by the Swiss National Sci-
ence Foundation through project number PBLAP2-127668
and by the US National Science Foundation through grants
0644013 and 0834529.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’11, March 21–25, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0605-8/11/03 ...$10.00.

1. INTRODUCTION
Distributed applications are inherently hard to program,

requiring developers to walk a thin line between specializ-
ing for the targeted distributed environment and creating
generic and reusable components. These concerns are exac-
erbated in pervasive systems which need to deal with mobil-
ity or wireless communication.

Software specialization concerns in distributed systems,
however, can be mitigated through the use of adequate ab-
stractions. For example, architectural patterns such as pub-
lish/subscribe or programming languages [13, 16] centered
around explicit events yield a higher-level model of the un-
derlying message-passing infrastructure, abstracting data rep-
resentation and communication properties. By communicat-
ing indirectly via production/consumption of event notifi-
cations, event-based components can remain largely decou-
pled, separating communication from computation. More
recently, there has been increased interest in raising the level
of abstraction by reasoning in terms of complex events com-
posed from simpler ones. Several programming languages
have been extended for event correlation [3, 8, 12, 17, 21,
30, 34, 38]. A closely related paradigm is stream processing,
which allows components to operate over specific sequences
of events [36, 37].

Unfortunately, current languages which support complex
events do not provide adequate abstraction from the under-
lying distributed communication protocols, thereby being
tied to specific environments or infrastructures by caveat.
As an example, consider events being correlated in a perva-
sive system. To perform simple time- or order -based corre-
lation à-la e1 < e2 on two events e1 and e2 where the former
must precede the latter, clearly timestamps of some form are
required. Even in the absence of explicit operators for order-
based correlation, several distributed correlation languages
have recently turned to models based on order of event oc-
currence or reception [30, 38], which requires timestamps.
With event stream models, such order is often implicit: cor-
relating over a sequence of m events e[0]...e[m − 1] implies
that e[i] precedes e[i + 1] ∀i ∈ [0..m− 2].

Yet, depending on the underlying environment, clocks may
be only weakly synchronized, or not at all, making logi-
cal clocks such as Lamport clocks [24] or vector clocks [25]
necessary. This in turn affects the underlying communica-
tion protocols as these rely on such information to ensure
temporal constraints or order. The choice of protocol is,
thus, dictated by the exact deployment environment. Simi-
larly, many distributed applications involving mobile clients
are nowadays developed with an inherent notion of local-

241

ity based on positioning mechanisms (e.g., GPS, Galileo,
RFID). Location-based publish/subscribe [11, 15, 26] is a
corresponding event-based programming model, where event
publications and subscriptions can be parametrized by abso-
lute (coordinates) and relative (range) spatial criteria. The
exact representation and handling of positioning information
will however strongly depend on the technology at hand.

It is thus desirable to abstract time, space, and other prop-
erties commonly associated with distributed events such as
authenticity, history, or confidence levels by a notion of event
context to further separate the design and implementation of
corresponding issues from the base logic of the software com-
ponents. Event contexts are instantiated upon event pro-
duction and considered throughout event propagation, cor-
relation, and handling. Any of these stages may involve the
execution of context-specific code, making contexts a cross-
cutting concern which can be modeled as domain-specific
aspects. Such aspects allow for adapted join points for event
production or event consumption and can provide a con-
cise mechanism for events to carry contextual information
with them to guide the application of protocols, controlled
through advice.

This paper addresses the problem of modular context rep-
resentation and handling in object-oriented programming
languages with support for explicit events. After illustrating
that the design of event contexts is a crosscutting concern in
distributed systems through real-world examples, this paper
makes the following technical contributions:

1. The design of domain-specific context aspects — con-
spects for short — to modularize the design and im-
plementation of event contexts. Our proposed design
is general, allowing any language with explicit event-
based constructs to be extended to support conspects.

2. An implementation of conspects in EventJava [12] on
two architectures including an embedded system with
a real-time Java virtual machine (Java VM).

3. An empirical evaluation of two applications: (a) an
event-based tornado monitoring application and (b) a
software suite for mobile social networking, to demon-
strate the performance benefits of using conspects to
choose different event dissemination protocols.

The remainder of this paper is structured as follows: Sec-
tion 2 presents background on explicit events and event con-
texts. Section 3 outlines features of conspects. Section 4
presents their implementation in EventJava. Sections 5 and
6 present the tornado monitoring and mobile social network-
ing case studies respectively. Section 7 presents related work
and Section 8 concludes with final remarks.

2. BACKGROUND AND MOTIVATION
In this section we outline the core abstractions of dis-

tributed event-based programming underlying EventJava [12],
and illustrate the need for specific support for event context
through a tornado monitoring application. In tornado mon-
itoring, several natural events are measured in order to pro-
duce a valid representation of ongoing weather conditions.
Horizontal wind velocity and cloud motion are examples of
such events which are used to derive different indicators,
such as Storm Relative Helicity (SRH) [32]. The applica-
tion is further analyzed and elaborated in Section 6.

2.1 Event Methods
An application event type is implicitly defined in Event-

Java by declaring an event method, a special kind of asyn-
chronous instance-level method. This is similar to other
object-oriented programming languages with support for ex-
plicit events (e.g., JoinJava [21], Cω [3], SCHOOL [8]).

2.1.1 Event definitions and production
The formal arguments of an event method correspond to

the (explicit) attributes of the event type. For example,
the signature hVelocity(float veloc, float alt) defines the type
of horizontal wind velocity events. The types of event at-
tributes (event method arguments) are restricted to primi-
tive or serializable types or remote references to ensure that
they can be passed over the wire. An event method declara-
tion is preceded by the event keyword, which differentiates
between a regular, synchronous, method with void return
type and an asynchronous event method. For instance, an
interface TornadoMonitor could declare a hVelocity event and
a cMotion event as follows:

interface TornadoMonitor {
event hVelocity(float velocity, float altitude);
event cMotion(float motion, float altitude);
}

EventJava supports the notification of an event to an in-
dividual object (unicast, 1-to-1) simply by invocation of the
corresponding event method on that object/remote object
proxy. For example, a horizontal wind velocity event can
be notified to an instance m of TornadoMonitor simply as m
.hVelocity(...). Invokers are not blocked upon event method
invocation but proceed asynchronously.

EventJava further supports implicit multicast (1-to-many)
interaction by reusing notation from static methods. For
example TornadoMonitor.hVelocity(...) dispatches the event
to all objects conforming to TornadoMonitor (and subtypes)
within confines specified at construction of respective ob-
jects. Destinations of a multicast event receive distinct copies
of all event attributes. While EventJava supports more
explicitly closed multicast groups or point-to-point (1-of -
many) communication through specific proxies, we focus on
the former multicast style for its brevity.

The same kind of multicast call can be made on any class
C implementing TornadoMonitor, limiting the event to all
instances of C and its sub-classes. Note that we use the term
multicast rather than broadcast, as the delivery of the event
to a particular object will always be subject to individual
criteria of potential destination objects as we will see shortly.

2.1.2 Event handling and composition
The easiest way to react to events is to implement respec-

tive events methods. Consider the class below:

class TornadoMonitorImpl implements TornadoMonitor {
event hVelocity(float veloc, float alt, long time) {...}
event cMotion(float motn, float alt, long time) {...}
}

The class allows us to receive, individually, all hVelocity
and cMotion events multicast as described above. By en-
abling the handling of complex events rather than only indi-
vidual events, application components can be simplified and
repetitive or spurious coordination, composition, and com-
munication can be reduced. In tornado monitoring, horizon-

242

tal wind velocity and cloud motion can for instance be corre-
lated to compute SRH. SRH measures, in part, the changing
of directions of winds among various altitudes within a par-
ticular area relative to a storm. Class TornadoMonitorImpl2
below joins events of the two types defined in interface

TornadoMonitor:

class TornadoMonitorImpl2 implements TornadoMonitor {
event hVelocity(float veloc, float alt, long time),

cMotion(float motn, float alt, long time) {...}
}

Such joins are expressed by comma-separated lists of event
method headers. The method body, referred to simply as re-
action, is thus“shared”among the event method headers. In
a reaction, we must prefix the event attribute names by the
respective event method names, e.g., hVelocity.alt/cMotion.
alt, when ambiguities can otherwise arise. There is no im-
plicit matching on homonymous attributes across events.

EventJava separates the expression of which events are
composed from how they are composed by the use of guards.
These are optional and their absence is interpreted as when
true. We can extend the example above as follows

class TornadoMonitorImpl3 implements TornadoMonitor {
event hVelocity(float veloc, float alt, long time),

cMotion(float motn, float alt, long time)
when (hVelocity.time < cMotion.time) {

float SRH = calculateSRH(veloc, motn);
if(SRH >= 30 && SRH < 100) triggerAlert(”Weak”);
if(SRH > =100 && SRH < 300) triggerAlert(”Mild”);
if(SRH >= 300) triggerAlert(”Strong”);
}
}

to express a strategy consisting in reacting in three ways
upon hVelocity events followed by cMotion events.

A guard can use regular Java operators for boolean expres-
sions, such as negation (!) or disjunction (||). The example is
simplified for presentation. For instance, timestamps would
in addition have to be within some range of each other.

Event windows in EventJava furthermore support the com-
position of several events of the same type. Such windows
are syntactically unified with arrays. As an example, we can
declare a class TornadoMonitorImpl4 which composes streams
of events over a window size of 4 as follows:

class TornadoMonitorImpl4 implements TornadoMonitor {
event hVelocity[4](float veloc, float alt, long time),

cMotion[4](float motn, float alt, long time){...}
...
}

The attributes of an individual event can be indexed. For
example, hVelocity[2].veloc or simply veloc[2] represents the
veloc value of the third instance of hVelocity (indices start
at 0 just as in arrays). Event streams imply ordering, i.e.,
for both event types above time[i]<time[i + 1] ∀i ∈ [0..2].

EventJava provides additional support for limited return
values, or synchronous handling (not invocation) through
an alternate queue keyword instead of event. These are not
relevant for the following and are thus omitted.

2.2 Event Contexts
In our tornado monitoring example, both horizontal ve-

locities and cloud motion events are timestamped.

2.2.1 Time
The class TornadoMonitorImpl3 above assumed synchro-

nized physical clocks when verifying that hVelocity occurs
before cMotion. The problem with this class is that it mixes
application logic with information which is specific to that
one representation of time. It cannot be deployed when sen-
sors have clocks which are not synchronized, which depends
on deployment, communication protocols, make, model, etc.

Selecting the appropriate representation of time is an im-
portant and difficult task when developing distributed sys-
tems. Relying on a too strong assumption (e.g. perfectly
synchronized clocks) can lead to violating safety properties
and thus to inconsistencies if the assumption does not hold
in practice. For instance, processes can be suspected to have
failed by some nodes but not by others. Inversely, an overly
weak notion of time can lead to inefficient programs. Take
the case of Lamport clocks [24], a lightweight approxima-
tion of real time by logical time. Lamport clocks capture
all actual causality relations among events, yet can lead to
many false positives, i.e., events which are considered to be
ordered while they are unrelated. When ordering events
issued by different interacting processes based on a combi-
nation of Lamport clocks with unique process identifiers to
break ties, an event from a given process p with timestamp
l can only be handled by another process p′ once p′ has
received events with larger timestamps than l from all pro-
cesses with smaller process identifiers than p [35]. This is
clearly an inefficient solution which can be improved by Vec-
tor clocks [25], but can be much more drastically improved
if synchronized clocks can be assumed (e.g., using NTP1)
and/or the network is inherently synchronous. Rewriting
an application for every possible type of logical or physical
time that might be encountered throughout test and produc-
tion deployments is onerous, especially as different notions
of time also will imply different protocols (e.g., multicast).

2.2.2 Problem characterization
Time is an intrinsic attribute of events, present from their

creation, throughout their transmission, composition, and
handling. But the definition of time for events is only an
instance of a general problem, namely that of defining their
contexts. In modern mobile location-sensitive communica-
tion scenarios, the origin of an event may for instance be as
relevant as their time of birth. As with time, such a space
dimension can be physical (based on GPS, Galileo, RFID
etc.) or logical (within a given building, room; based on
identifier of node, process, object, thread, class etc.). Many
more application-specific dimensions exist, such as a proof of
authenticity (enforcing security policies), history (for debug-
ging or audit), or confidence level (dealing with uncertainty).

Even if some context dimensions are specific to application
families, it is desirable to separate contexts from base code
as their exact implementations might vary across applica-
tions or deployments. At the same time, a library approach
is unsatisfactory as it does not allow for verifying consis-
tent uses of contexts. For instance, when correlating events
of different types, these should have comparable contexts.
Also, many actions for creating or handling context might be
repetitive. In short, contexts are a cross-cutting concern of

1http://en.wikipedia.org/wiki/Network_Time_
Protocol

243

http://en.wikipedia.org/wiki/Network_Time_Protocol
http://en.wikipedia.org/wiki/Network_Time_Protocol

event-based applications. We thus propose domain-specific
aspects for implementing these in EventJava.

3. CONTEXT ASPECTS
This section outlines the design of conspects — context

aspects for event-based distributed programming — first
through the tornado monitoring example, and then by an
example from mobile social networking.

3.1 Model Overview
We introduce first-class contexts, which resemble classes

in that they can declare fields and methods. The former rep-
resent the implicit attributes that are associated with events
to which a given context applies. The latter are predicates
that are used in guards, or are used for refactoring code
used in advice. Advice distinguishes contexts from classes
and comes in four types with specific join points for describ-
ing their use and manipulation in the creation and handling
phases of the events they apply to. Contexts are also respon-
sible for selecting protocols for the respective phases. Below
we further elaborate on these notions. We support single
inheritance for contexts, but a unique context must exist for
each event at every program point. When comparing two
events during event correlation, we require that contexts be
compatible, i.e., that the context associated with the latter
event must be of a subtype of the former event’s context.

3.2 Context Fields and Methods
Contexts are first-class constructs in EventJava, at the

same level as classes. A first characteristic of our context
aspects are context-specific fields, representing contextual
attributes of events. More precisely, we separate the event
attributes/event method arguments presented in the previ-
ous section into two kinds:

Explicit attributes denote application-defined event method
arguments which typically vary for every event type. An
example is the velocity argument of the hVelocity events
in the tornado monitoring application.

Implicit attributes constitute the context of an event. We
thus also refer to these simply as context attributes. The
canonical example is time, asillustrated by the tornado
monitoring example.

With conspects, implicit attributes are extracted from the
application into a context declaration. Implicit attributes
typically are the same for entire components or applications,
within deployments. Consider the following class:

class TornadoMonitorImpl5 implements TornadoMonitor {
event hVelocity(float veloc, float alt),

cMotion(float mtn, float alt)
when (hVelocity < cMotion) {...}
}

This class only contains the application logic to manipu-
late hVelocity and cMotion events. The time aspect of events
is abstracted, and captured by the PhysicalClock context out-
lined in Figure 1. Such a declaration looks similar to a class
declaration, but starts by the context keyword. The time
attribute can be viewed as a “field” of the context. Let us
focus on the context attributes and methods for now.

The comparison expressed previously on the time attribute
(hVelocity.time < cMotion.time) is now expressed on the event

context PhysicalClock {
long time;
boolean ”<”(PhysicalClock c)
{ return (time < c.time); }

publish TornadoMonitor.hVelocity(..) ||
TornadoMonitor.cMotion(..) {
time = System.currentTimeMillis();
with ReliableBroadcast(..);
}
...
}

context LogicalClock {
VectorClock vc;
boolean ”<”(LogicalClock vc1)
{ return (vc.compareTo(vc1) < 0); }

publish TornadoMonitor.hVelocity(..) ||
TornadoMonitor.cMotion(..) {
with VCCausalBroadcast(..);
}
...
}

Figure 1: Two different timestamp contexts: physi-
cal clocks vs. logical (vector) clocks

(names) themselves: hVelocity < cMotion. This comparison
is translated to an “invocation” of ”<” in the PhysicalClock
conspect. The quotes are necessary because the method

name is an operator in this case. While a comparison of
two events on ordering is most commonly interpreted as re-
lating to their logical or physical time of creation, any con-
text attributes could be used for such a comparison with
conspects. Consider the alternative context LogicalClock in
Figure 1, where class VectorClock is a standard implementa-
tion2 of vector clocks [25]. This context can be substituted
for PhysicalClock without changes to the application.

In general, conspects may define any number of methods
which can be used in guards. These methods can refer to the
attributes of the context via the thiscontext keyword. Just
like the standard this keyword, thiscontext can be omitted
when disambiguation is not necessary. Context methods cor-
respond typically to binary methods, i.e., they take a second
context of the same context type as argument, and are used
in guards in an infix notation. For example, equivalence ver-
ification of two contexts could be implemented as follows:

context EqualityContext {
...
boolean equals(EqualityContext other) {...}
}

A guard could then simply compare two correlated events
e1 and e2, making use of that context as follows:

event e1(...), e2(...) when (e1 equals e2) {...}

Context methods are not necessarily binary methods. Ad-
ditional arguments can be added after the counterpart con-
text argument; these have to be instantiated in the guard .
Suppose we wanted to verify whether a given event occurred
within a given range of another event. To that end, we can
define the following simple conspect:
2E.g. http://project-voldemort.com/javadoc/all/
voldemort/versioning/VectorClock.html.

244

http://project-voldemort.com/javadoc/all/voldemort/versioning/VectorClock.html
http://project-voldemort.com/javadoc/all/voldemort/versioning/VectorClock.html

context LocationContext {
...
Location loc;
boolean within(LocationContext other, Range rng) {...}
}

A guard could then simply compare two events e1 and e2,
making use of that context as follows:

event e1(...), e2(...)
when (e1 within(new Range(20)) e2) {...}

Context methods need not define a context argument;
they can also relate to a single event. Context methods
are declared in contexts and not for example in the applica-
tion logic to increase cohesion and decoupling of application
logic from contexts. Note that contexts can also define local
methods which are used in context advice explained shortly.

3.3 Context Creation and Handling
As mentioned, one of the motivations for separating con-

texts from application code is to isolate and regroup con-
text creation and handling operations and to avoid repet-
itive code. Typically, in the tornado monitoring example
with hardwired physical clocks, any event creation would
have to inquire the system clock through a method invoca-
tion like System.currentTimeMillis(...) and pass the obtained
value for the time argument when issuing an event. This is
still a relatively simple single operation, but in other cases,
this instantiation can be more complex. Many operations
on or with event contexts tend to be specific to the context
attributes and also highly repetitive.

To isolate and regroup such code, conspects include four
specific categories of event handling advice:

send is executed after a unicast event is produced but before
it is sent.

publish is executed after a multicast event is produced but
before it is multicast.

receive is executed after an event is received but before it is
matched to any pattern.

consume is executed after an event is matched to a pattern
but before it is consumed by a reaction.

As alluded to above, these advice are always executed
at a very specific moment with respect to the event han-
dling path. Their exact places of application are outlined by
pointcuts which are rather simple in their structure. More
precisely, there are only two types of elementary join points,
namely such (a) denoting the event types that the advice
(with the respective context) applies to and those (b) rep-
resenting the locus of application. For example, a join point
C.e in C′ in the case of a publish advice means that any
event multicast C.e(...) which occurs in class C′ will be ad-
vised by the respective advice. In the case of a receive or
consume advice, the same join point will imply that the ad-
vice is executed every time an instance of C.e is matched for
an instance of a class C′, implying that C′ is a subtype of
C. In the same scenario, C′.e in C′ means that only multi-
casts of e on C′ or subclasses of C′ will be advised, and C′.e
applies to all classes.

Consider the examples of Figure 1. In both contexts, we
detail publish advice that are executed upon multicasting

of hVelocity and cMotion events defined in the body of the
TornadoMonitorImpl5 class. The “..” notation for the explicit
event attributes means that the advice will not read or mod-
ify those. (Note that this concrete two dots syntax is distinct
from the three dots used to indicate the omission of details
for presentation simplicity.) The last line in the case of the
physical clocks (with ReliableBroadcast(..);) passes the event
to a protocol called “ReliableBroadcast” along with all con-
text fields. The remaining arguments of the event method
invocation are passed on without changes. The correspond-
ing line in the case of the logical clocks indicates that the
context attribute(s) will be created by the protocol layer – in
this case “VCCausalBroadcast”. These protocol invocations
are transformed to calls to specific APIs, outlined shortly.

In terms of control flow, all advice types have the same
semantics. Each advice is executed at a particular point
of the event handling path, but it must explicitly invoke a
protocol for the actual handling of that respective part in a
dedicated with clause. That is, the advice can choose not to
invoke such a protocol but that means that the event will
not be implicitly passed on. Different protocols can be se-
lected by a same advice. Consider the example of physical
and vector clocks. Both publish advice invoke a broadcast
protocol. These protocols must be bound at runtime for the
advice to work properly. Furthermore, several with clauses
can appear in the same advice, which allow protocols to be
switched at runtime. Table 1 presents an overview of our
four advice types and their duties/the protocols they invoke
along with examples. A default protocol exists for each of
these phases. It is invoked as with Default(..);. This default
protocol is similar in nature to the proceed keyword used in
around advice of AspectJ, except that, as mentioned, a pro-
tocol invocation in conspects is mandatory for the event to
be handled further. Just like proceed, such an invocation can
be both headed and followed by further statements. Since
event handling is asynchronous, there is however never a
return value for any of the advice.

Protocol
Advice type Protocol and library examples

invoked

send Unicast TCP/IP, UDP, Java RMI, MPI

publish Multicast
Multisend, Reliable Broadcast,
IP Multicast, JMS

receive Matching First received, most recent, Jess

consume
Threading

Single thread per object, thread
pool (thread per pattern, thread
per reaction)

Table 1: Overview of event instantiation and han-
dling advice types and examples in conspects.

It is important to note that the send and publish advice
play the role of “constructors” for contexts. They are re-
sponsible for ensuring that context attributes are initialized,
though the use of initializers coupled directly with attribute
declarations can simplify this task. In the physical clock
example, we could have declared the timestamp as follows

context PhysicalClock2 {
long time = System.currentTimeMillis();
...
}

245

leading to the same semantics as in Figure 1. This initial-
ization constraint is necessary to keep in mind when using
local context methods, i.e., refactoring code used in context
advice into context methods. In an advice of types receive
or consume one can assume that the attributes of a context
have been initialized by either a preceding send or publish
advice. An attribute which is always present in all advice is
this, which refers to the actual object which is issuing the
event (send or publish advice) or potentially consuming it
(receive or consume). Its value is null in the former case if
the event is created within a static method.

3.4 Mobile Social Networking Example
We showcase conspects through another example, this

time chosen from the domain of mobile social networking to
demonstrate other than time dimensions of event contexts.

3.4.1 Simple location-based publish/subscribe
The second, Friend Finder, application notifies friends of

each other’s nearby presence. Figure 2 presents an excerpt
of the application code using EventJava and conspects. For
simplicity, we omit the membership management, i.e., how
users originally get acquainted and connected, and use a sim-
ple multicast on class SimpleFriendFinder; quite obviously a
multicast will be limited to validated contacts. Users can
get notified of friends located nearby through a graphical
user interface (GUI) that will trigger the goOnline() method.
This method periodically (every 5000 ms) multicasts bea-
cons containing the name of the sender with a status set to
online to other nodes located within a given event range
eRange. Here, the range is defined and handled by the
SpaceRestriction context. As we will see shortly in an ad-
vanced friend finder version, the range can also be defined
by the user (through the GUI).

The SpaceRestriction context here uses a specific multicast
protocol (LPSSHybrid), which uses the sender’s location in-
formation and the restricted multicast range to physically
restrict the propagation of events. We will further elaborate
on this protocol in Section 6. The context also uses a spe-
cific matcher (omitted for brevity) which is rather trivial as
the implemented publish/subscribe model does not usually
exploit correlation of multiple events. The example alludes
to a single-threaded delivery model, i.e., there will be one
thread per SimpleFriendFinder object handling hello events.
In the receive advice an event is only passed to the matcher
if it originated within the given range (eRange) of the loca-
tion of the receiving device at that time. This is achieved
via the inRange predicate.

3.4.2 Advanced features
The outlined SimpleFriendFinder example corresponds to a

location-based publish/subscribe as described by Meier and
Cahill [26]. Many derived models (e.g., [11, 15]) associate
a time-to-live (TTL) property with every event, or restrict
location-based matches by complementing the event range
eRange fixed by senders to restrict event receivers (delineat-
ing an event space around the sender) by a reception range
rRange fixed by receivers to filter events based on sender
location (reception space). With the sender device continu-
ously moving, the sender location can be updated on events
that have been multicast already.

Figure 3 outlines a solution in EventJava which incorpo-
rates all these features. In this example, we show how con-

class SimpleFriendFinder implements ... {
String name;
...
void goOnline(){ while(true){ Thread.sleep(5000);

SimpleFriendFinder.hello(”online”, name);
}

}
event hello(String status, String name)
when (status==”online”) { GUI.alert(name+” is: ”+status); }

}

context SpaceRestriction {
Location loc;
Range eRange = ...
...
boolean inRange(Range r) {

double distance = Location.distance(Location.current(), loc);
return distance < r;

}
publish SimpleFriendFinder.hello(..){

loc = Location.current();
with LPSSHybrid(..);

}
receive SimpleFriendFinder.hello(..) {

if (inRange(eRange)) with LPSSMatcher(..);
}
consume SimpleFriendFinder.hello(..){with SingleThreader(..);}

}

Figure 2: Simple Friend Finder using EventJava

class FriendFinder extends SimpleFriendFinder {
Range eRange;
Range rRange;
long TTL;
void goOnline(){

FriendFinder.hello(”online”, name)[eRange, TTL];
}
event hello(String status, String name)

when (status==”online” && inRange(rRange))
{ GUI.alert(name + ” status: ” + status); }

}

context SpaceTimeRestriction extends SpaceRestriction{
long time;
long TTL;
publish FriendFinder.hello(..)[eRange, TTL] {

thiscontext.eRange = eRange;
thiscontext.TTL=TTL;
time = System.currentTimeMillis();
loc = Location.current();
with LPSSHybrid(..);

}
receive FriendFinder.hello(..) {

if(System.currentTimeMillis()<time+TTL &&
inRange(eRange)) with LPSSMatcher(..);

}
...

}

Figure 3: Advanced Friend Finder with constrained
event lifetime and spaces using EventJava

text can be set explicitly by the programmer, via a square
brackets “[...]” notation. In the example, Event ranges and
TTL values can be set individually for each event and re-
ception ranges can also be changed dynamically. The square
brackets thus convey required contextual arguments.

The inRange predicate verifies that the receiver is within

246

the event range in the receive advice and that the sender is in
the reception space in the event guard. This receive advice
also verifies if the received event is still valid before passing
it to the matcher. Classes LPSSHybrid and LPSSMatcher
implement APIs prescribed for implementations of proto-
cols that are to be called from publish (as well as send) and
from receive advice respectively. These APIs will be dis-
cussed in the next section. In addition to implementing a
prescribed interface, the LPSSHybrid class is responsible for
monitoring the current location of a device and sending po-
sition updates. Upon reception of such updates for a given
object, the class is in charge of informing the LPSSMatcher
which updates any events from the corresponding sender

(identified by name) that it has previously received.

4. IMPLEMENTATION
This section outlines the implementation of conspects.

4.1 Weaving
We have implemented conspects as an extension to Even-

tJava [12] which itself is implemented with the Polyglot
extensible compiler framework [28]. The compiler gener-
ates a class for each context declaration, as a subtype of
a root Context class, and generates code for the produc-
tion, reification, multicast, reception, and filtering of events
and dispatching of reactions. In contrast to contexts, events
are transformed to a generic representation with class Event
outlined in Figure 4 as they do not involve methods. The
compile-time weaver inserts context arguments into event
methods, and complements these by respective methods with
normalized arguments (only Event) and adds appropriate
where appropriate. A post-compile weaver for conspects us-
ing the ASM 2.0 bytecode manipulation framework to in-
strument compiled EventJava programs is underway.

4.2 Runtime Framework
To provide the proposed features, the implementation of

conspects is strongly intertwined with the runtime frame-
work underlying EventJava. Figures 5 and 6 present a high-
level view of this framework and illustrates where/how ad-
vice are applied. Figure 5 presents source code examples
prior to weaving and Figure 6 illustrates how an event is
processed from invocation to reaction.

Upon event multicasting, a context object is created, then
the body of the associated publish advice is executed dur-
ing which a generic event object is created containing the
context and its arguments. This object is passed to the
communication substrate which takes care of remote com-
munication. The substrate delivers all the serialized event
method invocations to the resolver, which determines the
classes (multicast) or objects (send) on which the methods
were invoked, conveying these through multicast objects in
the former case. When delivering the events to the event
handling objects, the bodies of the respective receive advice
are executed before the events are passed to the matcher
(one instance per object) where they are typically but not
necessarily stored in event queues. The matcher checks
stored events for completed complex events and evaluates
matching events based on the condition described in the
event guard. An identified match is passed to the handler
after the body of the consume advice is executed. The han-
dler triggers the reaction to the event via a given threading

class Sender{
// before invocation
Receiver.event1(a1, ..., aN)[];
// after invocation

}

class Receiver{
event event1(a1, ..., aN)

when(condition) {
... //reaction
}

}

class Context1{
type1 c1;
...
typeN cN;
publish Receiver.event1(..)[] in Sender{

c1 = ...; // publish start
...
cn = ...; // publish end
with XSubstrate(..);

}
send Receiver.event1(..)[] in Sender{

... // send body
with XSubstrate(..);

}
receive Receiver.event1(..){

... // receive body
with YMatcher(..);

}
consume Receiver.event1(..){

... // consume body
with ZHandler(..);

}
}

Figure 4: The EventJava runtime framework –
source code

model. The matcher may also include a garbage collection
policy, or update and replace stored events.

Resolver and multicast objects represent application type-
specific code generated at compilation to avoid costly calls
through the Java reflection API. The substrate, matcher,
and handler components are defined as an API, with the
main types being Substrate, Matcher, and Handler respec-
tively. Protocol invocations in advice correspond to sub-
types of these respective API types. For example, the call
to “VCCausalBroadcast” in the publish advice of Figure 1
will be transformed to a call to the multicast method of the
Substrate interface outlined in Figure 5 on an instance of
class VCCausalBroadcast implementing that interface.

The same approach is applied for matchers and handlers.
For brevity, Figure 5 only outlines the Substrate and Matcher
interfaces. Noteworthy in the former interface is the in-
troduction of filters which are constructed at compilation
from the predicates – one for each correlation pattern. Such
a filter follows an SQL-like syntax similar to the selectors
of JMS [20], and describes all conditions of a guard based
solely on event attribute comparisons. These filters can be
optionally used by a smart substrate to perform message
filtering throughout the network [16]. (The performance of
many multicast algorithms underlying location-based pub-
lish/subscribe as well as of algorithms underlying content-
based publish/subscribe in wired networks typically hinge on
such en-route filtering.) Conversely, Matcher allows the con-
sumer object to be connected to it as a Guardian. The latter

247

public class Event implements Serializable {
public String classN,
public String eventN;
public Context ctxt;
public Object[] args;
public Event(String typeN, Context c, Object ... args) {...}
...

}

public interface Substrate {
public void unicast(Remote receiver, Event ev);
public void multicast(Event ev);
public void leave(String typeN, EventReceiver recv);
public void join(String tN, EventReceiver recv, String filters);
...

}

public interface Matcher {
public void add(Event ev);
public void connect(Guardian guard);
...

}

Figure 5: Excerpt of API for conspects in EventJava

	 	 ...
	 	 //before	 invocation
	 	 Context1	 con	 =	
	 	 	 	 	 	 	 	 	 new	 Context1(...);

	
	 	 Event	 e	 =	 new	 Event(
	 	 	 	 	 	 	 	 	 "Receiver.event1",
	 	 	 	 	 	 	 	 	 	 con,
	 	 	 	 	 	 	 	 	 	 a1,...,aN);
	 	 XSubstrate	 s	 =	 ...;
	 	 s.multicast(e);
	 	 //after	 invocation
	 	 ...
	 	

	 	

Sender

Substrate

Network

Event invocation at runtime

EventReceiver	 r	 =	 ...;
r.deliver(e);

...	 //receive	 body

YMatcher	 m	 =	 ...;
m.add(e);

ZHandler	 h	 =	 ...;
h.react(...);

...	 //consume	 body

con.c1	 =	 ...;	 //publish	 start
...
con.cN	 =	 ...;	 //publish	 end

...	 //reaction	 body

Handler

Matcher

Event Store

if(condition)

consume
receive

publish

Receiver

Figure 6: The EventJava runtime framework – code
after weaving

interface allows application-specific guards to be invoked in
a generic manner from the matcher. The code implementing
this interface is generated automatically.

4.3 Fiji Virtual Machine
We ported EventJava to the Fiji VM3 which is an ahead-

of-time compiler that transforms Java bytecode into fast
ANSI C code. Thus it runs on any platform that has a
C compiler, threads, and locks. Supported platforms in-
clude Linux, Darwin, NetBSD, RTEMS, x86, PowerPC, and
LEON. A noteworthy feature of Fiji VM is its ability to
run in very restricted real-time (RT) embedded microker-

3http://www.fiji-systems.com.

nels such as the RT executive for multiprocessor systems
(RTEMS) [5]. RTEMS is used for hard safety-critical tasks,
including ESA and NASA missions.

Fiji VM supports priority-aware locking and RT priori-
ties for threads, and takes care not to use any unpredictable
operating system (OS) facilities, like OS-provided dynamic
memory allocation. Additionally, Fiji VM employs a variety
of techniques, detailed in [29], for ensuring that the gen-
erated C code obeys Java semantics, and permits accurate
stack maps for scanning by the garbage collector (GC). Fiji
VM currently utilizes an Immix-style [4] on-the-fly concur-
rent RT GC.

Although the Fiji VM supports GNU classpath, the stan-
dard Java libraries are typically too big for resource con-
strained embedded systems. The Fiji VM thus provides Fiji
Core, a smaller library, similar in scope and size to Java ME.
We ported the EventJava compiler to work with Fiji Core.
Additionally, since the Fiji VM is targeted at hard RT sys-
tems it does not support dynamic class loading or introspec-
tion that cannot be statically resolved using class hierarchy
analysis. Since EventJava and our conspects were carefully
designed not to necessitate such features, we were able to
easily deploy in such a resource-constrained environment.

5. CASE STUDY – TORNADO MONITOR
In this section, through a tornado monitoring applica-

tion, we illustrate the benefits of conspects by using them
to switch between protocols without affecting the base pro-
gram.

5.1 Tornado Monitoring Application
We use real-world complex events derived from NOAA’s

WDSS-II tornado monitoring system.4 The system con-
sists of a distributed tornado detection algorithm (WSR-88F
TVS5) with several components deployed over different ex-
ecution environments. Each component is tasked with pro-
cessing a different set of events. The deployment architec-
ture contains wireless field sensors over a large geographical
area, each measuring atmospheric parameters like wind ve-
locity, direction, air temperature and pressure. Wired base
stations communicate with the field sensors as well as other
neighboring base stations to consume and process weather-
related events, thereby providing real-time tornado informa-
tion. Each base station calculates several parameters like
SRH, Convective Available Potential Energy (CAPE) and
Energy Helicity Index (EHI). SRH is calculated by corre-
lating streams of horizontal wind velocity and cloud motion
events, and CAPE by correlating streams of air parcel tem-
perature and ambient temperature. EHI is calculated first
by finding the product of the SRH and the CAPE for a re-
gion, then the product is divided by a threshold CAPE. For
evaluating the event processing throughput of our imple-
mentation, we consider 4 producers (producing the various
wind speed, temperature and cloud motion events) and 6-16
consumers as described below in Section 5.3.

5.2 Communication Protocols
In our experiments, events were disseminated using three

reliable communication protocols implemented on top of UDP:
4http://www.nssl.noaa.gov/divisions/warning/swat/
wdssii.php
5http://www.nssl.noaa.gov/divisions/warning/swat/
tda.php

248

http://www.fiji-systems.com
http://www.nssl.noaa.gov/divisions/warning/swat/wdssii.php
http://www.nssl.noaa.gov/divisions/warning/swat/wdssii.php
http://www.nssl.noaa.gov/divisions/warning/swat/tda.php
http://www.nssl.noaa.gov/divisions/warning/swat/tda.php

(a) Network diagram for the throughput
experiments.

0 

5000 

10000 

15000 

20000 

25000 

0  5  10  15  20 

Th
ro
ug
hp

ut
 (e

ve
nt
s/
s)
 

# of (x86) nodes 

Causal Order Broadcast with Vector Clocks 

Causal Order Broadcast without Vector Clocks 

Reliable Broadcast 

(b) Throughput (events/sec) on x86.

0 

5000 

10000 

15000 

20000 

25000 

0  1  2  3  4  5  6  7 

Th
ro
ug
hp

ut
 (e

ve
nt
s/
se
c)
 

# of LEON boards 

Causal Order Broadcast with Vector Clocks 

Causal Order Broadcast without Vector Clocks 

Reliable Broadcast 

(c) Throughput (events/sec) on LEON
GR-XC3S-1500.

Figure 7: Event processing throughput (events/sec) of the tornado monitor benchmark using three different
event dissemination protocols

Reliable Broadcast: Clocks are synchronized and thus the
broadcast protocol does not need to deal with ordering.
Events are delivered based on their timestamps.

Vector Clock-based Causal Order Broadcast: A Causal
Order Broadcast primitive ensures that messages (events)
are delivered respecting cause-effect relations, thus pre-
serving real-time relations essential for consistency. Causal
Order Broadcast can be implemented with vector clocks
(cf. Section 3). The use of vector clocks is enabled by our
event contexts in this benchmark.

History-based Causal Order Broadcast: In this proto-
col, every multicast event carries a history of the events
previously delivered by its source, and no process deliv-
ers an event before it delivered all antecedents. By using
Uniform Reliable Broadcast, histories can be reduced to
identifiers which in practice can be pruned regularly.

Vector Clock-based Causal Order Broadcast is preferable
over History-based Causal Order Broadcast for small sys-
tems with high production rates. With low production rates
and scarce network resources the latter might be favorable.

5.3 Experimental Setup
The event processing throughput of our implementation

was evaluated using two different execution environments.
The first was a 16 node cluster of Dell workstations, each
with a Xeon 3.2GHz dual-core processor and 2 GB of RAM
running Linux. The cluster was divided into one producer
and 17 consumers. To adequately test our conspects in re-
source constrained environments, such as sensor networks,
we utilize the combination of the Fiji VM + RTEMS to cre-
ate realistic embedded scenarios in a 6-board cluster of GR-
XC3S-1500 LEON development boards. Each board’s Xilinx
Spartan3-1500 field programmable gate array was flashed
with a LEON3 configuration running at 40Mhz with 8MB
Flash PROM and 64MB of PC133 SDRAM. This environ-
ment is outlined in Figure 7(a).

5.4 Results
Figures 7(b) and 7(c) show that the throughput of the tor-

nado monitor application varies significantly with the choice
of dissemination protocol. The presence of synchronized

clocks yields the execution environment with strongest guar-
antees, throughput is consequently the highest with Reliable
Broadcast. In the absence of synchronized clocks, typical in
a distributed system, Causal Order Broadcast has to be used
to compare two events. Figure 7(b) shows that the through-
put of History-based Causal Order Broadcast (without vec-
tor clocks) is extremely low and degrades quickly. Using
Causal Order Broadcast with vector clocks in event contexts
increases the throughput on our workstation configuration
by a factor of 5x in the presence of 8 consumers and by a
factor of 40x in the presence of 16 consumers. Figure 7(c)
shows that the use of vector clocks increases the throughput
on the LEON GR-XC3S-1500 board by a factor of 3.3x in
the presence of 6 consumers.

6. CASE STUDY – SOCIAL NETWORKING
In this case study, we investigate three communication

(event dissemination) strategies in four different social ap-
plications running on a mobile ad hoc network. We show
that choosing the optimal communication strategy can sig-
nificantly improve performance in terms of message load.

6.1 Social Networking Applications
We evaluate the following application scenarios6:

• The Polling application can be used at conferences by
presenters to gather votes from all participants located
in a room during their talk. Participants typically re-
ceive an invitation to reply to certain questions.

• The Friend Finder application, which we used as ex-
ample in Section 3, allows people to be notified of the
presence of nearby friends. We evaluate two settings
of the application, the first one with 30 users (FF1)
and the second one with 300 users (FF2).

• The Search application is used by conference partici-
pants who want to be notified when a participant with
a certain profile (e.g., name, activity, interest) comes
within a certain proximity.

6Cf. SpotMe http://www.spotme.com.

249

http://www.spotme.com

• The Advertisement application is the last scenario we
investigate. Here, shoppers are notified when nearby
shoppers have offers of interest for them.

6.2 Communication Protocols
We use conspects to switch between three location-based

publish/subscribe (LPSS) protocols to match events based
on their content and disseminate them to interested receivers
in a defined range. First, the LPSSMessageCentric protocol,
which disseminates events along with contextual information
in a defined range and performs matching on the receiver
side. Second, the LPSSQueryCentric protocol, which relies on
the propagation of queries and location criteria of receivers
in a defined range to allow senders to perform the matching
and initiate the routing of events. Third, the LPSSHybrid
protocol, where both events and queries are broadcast up to
a half the radius of the defined range and events are routed
to receivers outside of this shortened radius. Each of these
strategies can outperform the others depending on the com-
munication pattern of the application scenario (e.g., number
of senders and receivers, ratio between events and receivers).

6.3 Experimental Setup
We use a 500 meter-wide geographical field on which nodes

evolve. The field is populated by 300 nodes which include
receivers, senders and passive nodes that are running the ap-
plication. Each node has WiFi capabilities with a transmis-
sion range of 50 meters. In order to simulate mobility we use
the Random Waypoint (RWP) mobility model with walking
speed (2-3 m/s).7 We set a 5 second refresh rate, which in-
dicates the time-span after which all persistent messages or
all queries are re-broadcast in the message- or query-centric
strategies respectively. We ran simulations with durations
between 100 and 6000 seconds depending on the scenario.
Parameters specific to each application are presented in Ta-
ble 2: the number of senders and the number of receivers, as
well as the percentage of events matching in content and the
relevant range which defines the proximity filter that sender
and receiver must satisfy in order for receivers to receive
events. Regarding this last parameter, two different values
are evaluated, a 125 meter range and a 250 meter range.

Senders Receivers Cont. Match Range

Poll 300 1 100% 125, 250m
Search 300 30 10% 125, 250m
FF1 30 30 100% 125, 250m
FF2 300 300 100% 125, 250m
Ads 30 300 100% 125, 250m

Table 2: Scenario-specific parameters

6.4 Results
The simulations presented hereafter were executed using

the Sinalgo8 network simulator, which is specifically designed

7RWP has been criticized [40] in the past for exhibiting a
high concentration of nodes at the field center of the field
and for unrealistic movement patterns. To address the first
issue, we use a torus shaped map. For the second issue we
consider that people moving in an open field constitutes one
of the closest real-life scenarios for RWP.
8http://dcg.ethz.ch/projects/sinalgo/.

for protocol simulations in wireless networks. Sinalgo re-
places sockets to simulate nodes communicating wirelessly
in an ad hoc network but runs on a standard Java VM. Fig-
ures 8 summarize the results of the three communication
strategies for the location-based publish/subscribe service
in the context of the previously described scenarios. These
comparative results show the message load generated by
each strategy in percentage points compared to the LPSSHy-
brid protocol at the end of the simulation. These ratios are
expected to remain the same for longer simulations. Note
that the delivery ratio of all simulations are comparable.

Poll

Lo
ca

tio
n

m
at

ch

25
0

m
 ra

ng
e

FF1 FF2Search Advertisement

LPSSMessageCentric LPSSHybrid LPSSQueryCentric

Lo
ca

tio
n

m
at

ch

12
5

m
 ra

ng
e

0

100

200

300

400400

200

0 0

75

150

225

300300

150

0 0

100

200

300

400400

200

0 0

48

95

143

190200

100

0 0

100

200

300

400400

200

0

0

75

150

225

300300

150

00

50

100

150

200200

100

00

100

200

300

400400

200

00

100

200

300

400400

200

00

100

200

300

400400

200

0

Figure 8: Message load in percent – Hybrid = 100%

Polling: Here, results show that the LPSSQueryCentric pro-
tocol outperforms the others in terms of message load.
On one hand, the LPSSHybrid protocol is outperformed
by a factor between 10 and 20 by the LPSSQueryCentric
protocol. On the other hand, LPSSMessageCentric proto-
col is outperformed by a factor between 3 and 4 by the
LPSSHybrid protocol. Hence the difference between the
best and the worst strategy is a factor 50.

Search: Here, results show that the LPSSQueryCentric proto-
col outperforms the other two. The LPSSHybrid protocol
is outperformed by a factor 2,5. The LPSSMessageCentric
protocol is outperformed by a factor between 3 and 3,5
by the LPSSHybrid protocol. Hence the difference between
the best and the worst strategy is around a factor 8.

Friend Finder I: In this application, we consider 30 partici-
pants interested in receiving notifications from each other
when they are nearby. The LPSSHybrid protocol outper-
forms the LPSSMessageCentric protocol by a factor of 1,5
and the LPSSQueryCentric protocol by a factor of 2.

Friend Finder II: In this application, where we consider all
300 nodes as part of the friend list, the results show
that the LPSSHybrid protocol and the LPSSMessageCen-
tric protocol are close, each one beating the other by 20%.
The LPSSQueryCentric protocol is outperformed by a fac-
tor between 2 and 4.

Advertisement: Here, 30 events are sent to all nodes are in-
terested in such messages, we consider that all shopper
eventually pass in front of the different shops and are

250

http://dcg.ethz.ch/projects/sinalgo/

interested in receiving their offers. Here, the LPSSMes-
sageCentric protocol is the most efficient in terms of mes-
sage load. The LPSSHybrid protocol comes in second with
between 3 and 4 times more messages, nevertheless it
outperforms the query-centric by a factor 3,5. Hence,
the LPSSQueryCentric protocol is outperformed by the
LPSSMessageCentric protocol by a factor between 10 and 12.

As stated previously, no strategy outperforms all others
in every scenario. Each strategy can demonstrate its su-
periority in a certain real life setting. The quantification
of the differences between the message loads achieved for
the different scenarios advocates for the usage of an opti-
mal strategy if the communication pattern can be inferred
in advance. If this not the case or if the communication pat-
terns vary strongly, the LPSSHybrid protocol can be used as
a safe, though not always optimal, solution, since it is never
the worst of the three strategies. With conspects protocols
can be switched even upon workload variations.

7. RELATED WORK
This section presents work closest related to our contexts

for event-based programming, which includes efforts on mod-
els and support for context-oriented programming, aspect-
oriented programming, and event-based programming.

7.1 Context-Oriented Programming
Context-oriented programming (COP) [19] is a program-

ming paradigm which enables applications to modify their
behaviors according to several dynamic program parame-
ters. COP introduces the concept of layers, which modu-
larize behavioral variations spread over several application
modules. In this programming paradigm, there are two
types of method definitions, namely plain and layered [1].
Layered methods consist of base methods containing context-
independent code, and partial methods that contain context-
dependent code. Layers can be dynamically activated by the
program, potentially based on conditions in the execution
environment, and can be easily composed. Base methods are
executed when no layers are active, whereas partial meth-
ods are executed in the order in which layers are activated
by the program. In COP side-effects generated by context-
sensitive dynamically activated layers are global. Tanter [39]
addresses this problem by proposing contextual values, which
are values that depend on the context in which they are ac-
cessed and modified. An extension of Scheme with support
for explicit contextual values is described in [39].

COP and the context-oriented languages mentioned above
explore a completely new paradigm compared to our notion
of contexts which is more specific to explicit event-based
programming and pragmatic in its nature. For a more de-
tailed description of COP, the reader is referred to [19] and
[1]. Some COP extensions/incarnations are ContextS [18]
for SmallTalk, or ContextJ [2] for Java.

7.2 Aspect-Oriented Programming
The popular AspectJ [23] language contains a vast col-

lection of mechanisms which can mimic some features of
conspects. For example, by introducing naming and typ-
ing conventions through compiler directives, AspectJ can
support event methods. within pointcuts can determine the
association between an event method call join point and the
containing class, allowing for the context creation to occur

similarly to publish/send. Further conventions can be in-
troduced on the event consumer side for the expression of
shared method bodies (reactions) or guards. Dynamic invo-
cations through reflection can be used to unmarshal events
received over the wire to trigger the corresponding method
invocations. In general, AOP can be viewed as a form of
implicit event-based programming as opposed to the ex-
plicit events used herein, each of which have their advan-
tages. The inherent support for events in EventJava, es-
pecially the generation of filters which can be applied by a
middleware substrate at event routing, yield important per-
formance benefits. Without such filters, only the message-
centric algorithm mentioned in Section 6.1 becomes avail-
able for location-based publish/subscribe, leading to poor
performance in many scenarios as outlined.

Event-based aspect-oriented programming (EAOP) [7] pro-
vides a generic framework for the formal definition and inter-
action analysis of stateful aspects, with aspect composition
and inter-crosscut pattern variables. Remote interaction is
unfortunately not supported. Conversely, aspects with ex-
plicit distribution (AWED) [27] support the remote moni-
toring of distributed applications with remote pointcuts and
distributed advice.

7.3 Event-based Programming
Many programming languages support events explicitly

through some form of asynchronous methods or specific con-
structs. Examples include ECO [16], Ptolemy [31], Ambi-
entTalk [6], and JavaPS [10], or Actor-based languages and
language extensions such as Erlang [9] or Scala Actors [17].
Most languages or language extensions with support for cor-
relation, such as Polyphonic C# [3] (now integrated with
Cω), JoinJava [21], or SCHOOL [8], and libraries such as
for Visual Basic [34], Erlang [30], or Scala [17] are based on
the Join Calculus [14]. CML [33] and other languages with-
out inherent support for correlation rely on “staged” event
matching where the consumption of a first event is a pre-
condition for subsequent matching. These languages vary
in subtle but important ways in their event representation
(methods, objects, functions/function calls, etc.), address-
ing mechanism (unicast, multicast, broadcast), or in other
parts of their underlying models and implementations. Yet
none of these languages support modular expression of con-
texts. Our own EventJava [12] was previously presented
with a much more rudimentary model of contexts based on
libraries and program design conventions, detailed in [22].

8. CONCLUSION
Programming pervasive systems is difficult as it requires

dealing with asynchrony, distribution, and heterogeneous
environments. One of the central issues in such systems
is to decouple participants in time and space, as well as
along other dimensions. In this paper we presented domain-
specific aspects called conspects for capturing event context
in modular way. We presented the semantics of these context
aspects and illustrated their usage through two pervasive ap-
plications. We provided a detailed evaluation for the gains
in performance that protocol switching based on conspects
permits in two real-world case studies corresponding to those
applications: a NOAA tornado monitoring application and
a mobile social networking suite.

We are currently extending our work on several fronts.
The major extensions consist in refining a static program

251

analysis for verifying that the context for a given event is
unique and that contexts of different correlated events are
comparable, and in post-compile weaving of conspects.

9. REFERENCES

[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,
and M. Perscheid. A Comparison of Context-oriented
Programming Languages. COP’09.

[2] M. Appeltauer, R. Hirschfeld, and H. Masuhara.
Improving the Development of Context-dependent
Java Applications with ContextJ. COP’09, pages 1–5.

[3] N. Benton, L. Cardelli, and C. Fournet. Modern
Concurrency Abstractions for C#. TOPLAS,
26(5):769–804, 2004.

[4] S.M. Blackburn and K.S. McKinley. Immix: a
Mark-Region Garbage Collector with Space Efficiency,
Fast Collection, and Mutator Performance. PLDI’08,
pages 22–32.

[5] OAR Corporation. Real-Time Executive for
Multiprocessor Systems (RTEMS).
http://www.rtems.org, 2009.

[6] J. Dedecker, T. Van Cutsem, S. Mostinckx,
T. D’Hondt, and W. De Meuter. Ambient-Oriented
Programming in AmbientTalk. ECOOP’06, pages
230–254.

[7] R. Douence, P. Fradet, and M. Südholt. Composition,
Reuse and Interaction Analysis of Stateful Aspects.
AOSD’04, pages 141–150.

[8] S. Drossopoulou, A. Petrounias, A. Buckley, and
S. Eisenbach. SCHOOL: a Small Chorded
Object-Oriented Language. Electr. Notes Theor.
Comput. Sci., 135(3):37–47, 2006.

[9] Ericsson Computer Science Laboratory. The Erlang
Pogramming Language. www.erlang.org.

[10] P. Eugster. Type-based Publish/Subscribe: Concepts
and Experiences. TOPLAS, 29(1), 2007.

[11] P. Eugster, B. Garbinato, and A. Holzer.
Location-based publish/subscribe. NCA’05.

[12] P. Eugster and K.R. Jayaram. EventJava: An
Extension of Java for Event Correlation. ECOOP’09,
pages 570–594.

[13] L. Fiege, M. Mezini, G. Mühl, and A. Buchmann.
Engineering Event-Based Systems with Scopes.
ECOOP’02, pages 309–333.

[14] C. Fournet and C. Gonthier. The Reflexive Chemical
Abstract Machine and the Join Calculus. POPL’96,
pages 372–385.

[15] D. Frey and G.-C. Roman. Context-Aware Publish
Subscribe in Mobile Ad hoc Networks.
Coordination’07, pages 37–55.

[16] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul.
Filtering and Scalability in the ECO Distributed
Event Model. PDSE’00, pages 83–92.

[17] Philipp Haller and Tom Van Cutsem. Implementing
Joins using Extensible Pattern Matching.
COORDINATION’08, pages 135–152.

[18] R. Hirschfeld, P. Costanza, and M. Haupt. An
Introduction to Context-Oriented Programming with
ContextS. GTTSE’07, pages 396–407.

[19] R. Hirschfeld, P. Costanza, and O. Nierstrasz.

Context-oriented Programming. Journal of Object
Technology, 7(3):125–151, 2008.

[20] Sun Microsystems Inc. Java Message Service -
Specification, version 1.1. Technical report, Sun
Microsystems Inc., 2005.
http://java.sun.com/products/jms/docs.html.

[21] S.G. Von Itzstein and D.A. Kearney. The Expression
of Common Concurrency Patterns in Join Java.
PDPTA’04, pages 1021–1025.

[22] K.R. Jayaram and P. Eugster. Context-Oriented
Programming with EventJava. COP’09, pages
570–594.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W.G. Griswold. An Overview of
AspectJ. ECOOP 2001.

[24] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Commun. ACM,
21(7):558–565, 1978.

[25] F.J. Mattern. Virtual Time and Global States of
Distributed Systems. WPDA’89, pages 215–226.

[26] R. Meier and V. Cahill. Steam: Event-based
middleware for wireless ad hoc networks. DEBS 2002,
pages 639–644, 2002.

[27] L.D.B. Navarro, M. Südholt, W. Vanderperren, B. De
Fraine, and D. Suvée. Explicitly Distributed AOP
using AWED. AOSD’06, pages 51–62.

[28] N. Nystrom, M. R. Clarkson, and A. C. Myers.
Polyglot: An Extensible Compiler Framework for
Java. CC’03, pages 138–152.

[29] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek.
High-level programming of embedded hard real-time
devices. EuroSys ’10, pages 69–82.

[30] H. Plociniczak and S. Eisenbach. JErlang: Erlang with
Joins. COORDINATION’10, pages 61–75.

[31] H. Rajan and G.T. Leavens. Ptolemy: A Language
with Quantified, Typed Events. ECOOP’08, pages
155–179.

[32] E.N. Rasmussen. Refined Supercell and Tornado
Forecast Parameters. Weather and Forecasting,
18:530–535, 2003.

[33] J. H. Reppy and Y. Xiao. Specialization of CML
Message-passing Primitives. POPL’07, pages 315–326.

[34] C. V. Russo. Join Patterns for Visual Basic.
OOPSLA’08, pages 53–72.

[35] F.B. Schneider. Implementing Fault-Tolerant Services
Using the State Machine Approach: a Tutorial. ACM
Computing Surveys, 22(4):299–319, December 1990.

[36] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade,
V. Kumar, and K.-L. Wu. A Universal Calculus for
Stream Processing Languages. ESOP’10, pages
507–528.

[37] J.H. Spring, J. Privat, R. Guerraoui, and J. Vitek.
StreamFlex: High-throughput Stream Programming
in Java. OOPSLA’07, pages 211–228.

[38] M. Sulzmann, E.S.L. Lam, and P. Van Weert. Actors
with Multi-headed Message Receive Patterns.
COORDINATION 2008, pages 315–330, 2010.

[39] E. Tanter. Contextual Values. DLS’08, pages 1–10.

[40] J. Yoon, M. Liu, and B. Noble. Random Waypoint
Considered Harmful. INFOCOM’03.

252

http://www.rtems.org
www.erlang.org
http://java.sun.com/products/jms/docs.html

	Introduction
	Background and Motivation
	Event Methods
	Event definitions and production
	Event handling and composition

	Event Contexts
	Time
	Problem characterization

	Context Aspects
	Model Overview
	Context Fields and Methods
	Context Creation and Handling
	Mobile Social Networking Example
	Simple location-based publish/subscribe
	Advanced features

	Implementation
	Weaving
	Runtime Framework
	Fiji Virtual Machine

	Case Study -- Tornado Monitor
	Tornado Monitoring Application
	Communication Protocols
	Experimental Setup
	Results

	Case Study -- Social Networking
	Social Networking Applications
	Communication Protocols
	Experimental Setup
	Results

	Related Work
	Context-Oriented Programming
	Aspect-Oriented Programming
	Event-based Programming

	Conclusion
	References

